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1. Find the values of x for which  

 

5 cosh x – 2 sinh x = 11, 

 

 giving your answers as natural logarithms. 

 (6) 

 

 

2. The point S, which lies on the positive x-axis, is a focus of the ellipse with equation 
4

2
x

 + y
2
 = 1. 

 Given that S is also the focus of a parabola P, with vertex at the origin, find 

 

 (a) a cartesian equation for P, 

(4) 

 (b) an equation for the directrix of P. 

 (1) 

 

 

3.  The radius of curvature of a curve C, at any point on C, is e
sin 

 cos  , where  is the angle 

between the tangent to C at P and the positive axis, and 0    
2


. 

 

 Taking s = 0 at  = 0, find an intrinsic equation for C. 

(4) 

 

4. The curve C has equation y = arctan x
2
,  0  y < 

2


. 

 

 Find, in surd form, the value of the radius of curvature of C at the point where x = 1. 

 (6) 

 

5. The curve with equation 

y = –x + tanh 4x,   x  0, 

 

 has a maximum turning point A. 

 

 (a) Find, in exact logarithmic form, the x-coordinate of A.  

 (4) 

(b) Show that the y-coordinate of A is 
4
1 {23 – ln(2 + 3)}. 

(3) 
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6.              Figure 1 
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 The curve C, shown in Figure 1, has parametric equations 

 

       x = t – ln t, 

       y = 4t,      1  t  4. 

 

 (a) Show that the length of C is 3 + ln 4. 

(7) 

 

 The curve is rotated through 2 radians about the x-axis. 

 

(b) Find the exact area of the curved surface generated.  

(4) 
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7.                   Figure 2 
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 Figure 2 shows a sketch of part of the curve with equation 

 

y = x
2
 arsinh x. 

 

 The region R, shown shaded in Figure 2, is bounded by the curve, the x-axis and the line x = 3. 

 

 Show that the area of R is 

9 ln (3 + 10) – 
9
1 (2 + 710). 

 (10) 

 

8.      In = ,    n  0. 


xxx
n dcosh

 

 (a) Show that, for n  2, 

 

In  = x
n
 sinh x – nx

n – 1
 cosh x + n(n – 1)In – 2. 

(4) 

 (b) Hence show that 

 

I4 = f(x) sinh x + g(x) cosh x + C, 

  where f(x) and g(x) are functions of x to be found, and C is an arbitrary constant. 

(5) 

 (c) Find the exact value of , giving your answer in terms of e. xxx dcosh

1

0

4




(3) 
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9. The ellipse E has equation 
2

2

a

x
 + 

2

2

b

y
 = 1 and the line L has equation y = mx + c, where m > 0 

and c > 0.   

 

 (a) Show that, if L and E have any points of intersection, the x-coordinates of these points are the 

roots of the equation 

 

(b
2
 + a

2
m

2
)x

2
 + 2a

2
mcx + a

2
(c

2
 – b

2
) = 0. 

 (2) 

 

 Hence, given that L is a tangent to E, 

 

 (b) show that c
2
 = b

2
 + a

2
m

2
. 

(2) 

 

 The tangent L meets the negative x-axis at the point A and the positive y-axis at the point B, and 

O is the origin. 

 

 (c) Find, in terms of m, a and b, the area of triangle OAB. 

(4) 

 (d) Prove that, as m varies, the minimum area of triangle OAB is ab. 

(3) 

 (e) Find, in terms of a, the x-coordinate of the point of contact of L and E when the area of 

triangle OAB is a minimum. 

(3) 
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